首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7512篇
  免费   469篇
  国内免费   233篇
电工技术   19篇
综合类   167篇
化学工业   1404篇
金属工艺   1120篇
机械仪表   244篇
建筑科学   90篇
矿业工程   1115篇
能源动力   339篇
轻工业   642篇
水利工程   4篇
石油天然气   49篇
武器工业   13篇
无线电   104篇
一般工业技术   1347篇
冶金工业   1452篇
原子能技术   59篇
自动化技术   46篇
  2024年   10篇
  2023年   81篇
  2022年   162篇
  2021年   272篇
  2020年   230篇
  2019年   229篇
  2018年   196篇
  2017年   238篇
  2016年   202篇
  2015年   220篇
  2014年   421篇
  2013年   432篇
  2012年   431篇
  2011年   623篇
  2010年   434篇
  2009年   496篇
  2008年   390篇
  2007年   470篇
  2006年   432篇
  2005年   326篇
  2004年   284篇
  2003年   300篇
  2002年   229篇
  2001年   191篇
  2000年   164篇
  1999年   133篇
  1998年   128篇
  1997年   100篇
  1996年   81篇
  1995年   91篇
  1994年   50篇
  1993年   42篇
  1992年   22篇
  1991年   34篇
  1990年   24篇
  1989年   18篇
  1988年   7篇
  1987年   7篇
  1986年   4篇
  1983年   2篇
  1982年   1篇
  1981年   5篇
  1980年   1篇
  1965年   1篇
排序方式: 共有8214条查询结果,搜索用时 31 毫秒
1.
The present work addresses the potentialities of Pt–Ru nanoparticles deposited on a graphene oxide (RGO) and TiO2 composite support towards electrochemical oxidation of ethanol in acidic media relevant for fuel cell applications. To immobilize platinum–ruthenium bimetallic nanoparticles on to an RGO-TiO2 nanohybrid support a simple solution-phase chemical reduction method is utilized. An examination using electron microscopy and energy dispersive X-ray spectroscopy (EDS) indicated that Pt–Ru particles of 4–8 nm in diameter are dispersed on RGO-TiO2 composite support. The corresponding Pt–Ru/RGO-TiO2 nanocomposite electrocatalyst was studied for the electrochemical oxidation of ethanol in acidic media. Compared to the commercial Pt–Ru/C and Pt/C catalysts, Pt–Ru/RGO-TiO2 nanocomposite yields higher mass-specific activity of about 1.4 and 3.2 times, respectively towards ethanol oxidation reaction (EOR). The synergistic boosting provided by RGO-TiO2 composite support and Pt–Ru ensemble together contributed to the observed higher EOR activity and stability to Pt–Ru/RGO-TiO2 nanocomposite compared with other in-house synthesized Pt–Ru/RGO, Pt/RGO and commercial Pt–Ru/C and Pt/C electrocatalysts. Further optimization of RGO-TiO2 composite support provides opportunity to deposit many other types of metallic nanoparticles onto it for fuel cell electrocatalysis applications.  相似文献   
2.
Here we report the synthesis of 1D TiO2 sub 10 nm nanowires through one pot hydrothermal method in an alkaline NaOH medium at 95 °C for 36 h. Further, these TiO2 nanowires were embellished with silver (Ag) using polyvinylpyrrolidone (PVP) and ethylene glycol (EG) based solvothermal route at 160 °C for 4 h. With Ag decoration the photocatalytic activity was enhanced and the complete photooxidation of Methylene Blue (MB) was achieved in 35 min under optimized conditions. Super- and ultra-hydrophobic coating on cotton fabric exhibited a consistent antibacterial activity with enhanced UV-blocking property. Enhanced multifunctional properties observed were primarily attributed to the formation of Ag decorated 1D sub 10 nm TiO2 nanowires heterojunctions achieved using facile chemical route. Hence, such multiple functionalities make the 1D sub 10 nm TiO2 nanowires good candidate for industrial and domestic wastewater treatment.  相似文献   
3.
In this study, the Bayan Obo rare earth concentrates mixed with Na2CO3 were used for roasting research. The phase change process of each firing stage was analyzed. The kinetic mechanism model of the continuous heating process was calculated. This study aims to recover valuable elements and optimize the production process to provide a certain theoretical basis. Using X-ray diffraction (XRD), Fourier infrared spectroscopy, scanning electron microscopy with energy dispersive spectrometry, the reaction process and the existence of mineral phases were analyzed. The variable temperature XRD and thermogravimetric method were used to calculate the roasting kinetics. The phase transition results show that carbonate-like substances first decompose into fine mineral particles, and CaO, MgO, and SiO2 react to form silicates, causing hardening. Further, REPO4 and NaF can directly generate CeF3 and CeF4 at high temperatures, and a part of CeF4 and NaF forms a solid solution substance Na3CeF7. Rare earth oxides calcined at a high temperature of 750 °C were separated to produce Ce0.6Nd0.4O1.8, Ce4O7, and LaPrO3+x. Then, BaSO4, Na2CO3, and Fe2O3 react to form barium ferrite BaFe12O19; the kinetic calculation results show that during the continuous heating process, the apparent activation energy E reaches the minimum in the entire reaction stage in the temperature range of 440–524 °C, and the reaction order n reaches the maximum, which indicates that the decomposition product REFO significantly impacts the reaction system and reduces the activation energy. The mechanism function is F(α) = [?ln (1?α)]1/3. The reaction order n reaches the minimum in the temperature range of 680–757 °C, and the apparent activation energy E is large. The difficulty of the reaction increases during the final stage. The reaction mechanism function is F(α) = [1?(1?α)1/3]2. Observing the entire reaction stage, the step of controlling the reaction rate changes from random nucleation to three-dimensional diffusion (spherical symmetry).  相似文献   
4.
《Ceramics International》2022,48(5):6322-6337
To optimize the corrosion, bioactivity, and biocompatibility behaviors of plasma electrolytic oxidation (PEO) coatings on titanium substrates, the effects of five process variables including frequency, current density, duty cycle, treatment time, and electrolyte Ca/P ratio were evaluated. In our systematic study, a Taguchi design of experimental based on an L16 orthogonal array was used. For this, the coatings characteristics such as the surface roughness, wettability, rutile to anatase and Ca/P ratios, and corrosion polarization resistance were investigated. After determining the optimum process variables for each response, the apatite forming ability in SBF (bioactivity behavior) and MG63 cell attachment and flattening (biocompatibility behavior) for two groups of coatings were examined. The first group was optimized based on the maximum corrosion polarization resistance and the variables were set as the frequency of 2000 Hz, the current density of 5 A/dm2, the duty cycle of 30%, the treatment time of 5 min, and the Ca/P ratio of 0.65 at. % in the electrolyte. For the second group, the maximum surface roughness, greatest Ca/P ratio, and highest wettability as well as the minimum rutile to anatase ratio in coatings, could be obtained when the variables were set as the frequency of 10 Hz, the current density of 12.5 A/dm2, the duty cycle of 50%, the treatment time of 12.5 min, and the Ca/P ratio of 1.70 at. % in the electrolyte. The results showed that while both groups of coatings indicated a significant apatite forming ability and can serve as bioactive coatings, a proper attachment and flattening of cells and consequently, the favorable biocompatibility properties were seen only in the first group.  相似文献   
5.
《Ceramics International》2022,48(16):22906-22916
Solid-state reaction of α-Ti(HPO4)2·H2O (α-TiP) and acetates of Co, Ni, or Cu at 500 °C and 800 °C produce a number of different metal titanium phosphate (MTiP) inorganic pigments with different colors and shades. At a given metal to α-TiP ratio and calcination temperature, the reaction produces several types of pigments such as phosphates M0.5TiO(PO4), M0.5Ti2(PO4)3, M2P2O7, and M3(PO4)3 (M = Co, Ni, and Cu) with a unique color. α-TiP, an iron free base material was prepared by digestion of high-grade natural ilmenite beach sand (FeTiO3) with 85 wt% H3PO4 at 120 °C. TGA, XRD, SEM/EDX, Diffuse reflectance UV–vis, and Raman spectroscopy techniques were used for characterization. Synthesized MTiP pigments after enameling at a single fire glazing at 1100 °C for 45 min exhibit vivid colors, ranging from purple, yellow, and green with different shades.  相似文献   
6.
Porous bony scaffolds are utilized to manage the growth and migration of cells from adjacent tissues to a defective position. In the current investigation, the effect of titanium oxide (TiO2) nanoparticles on mechanical and physical properties of porous bony implants made of polymeric polycaprolactone (PCL) is studied. The bio-nanocomposite scaffolds are prepared with composition of nanocrystalline hydroxyapatite (HA) and TiO2 powder using the freeze-drying technique for different weight fractions of TiO2 (0 wt%, 5 wt%, 10 wt%, and 15 wt%). In order to identify the microstructure and morphology of the fabricated porous bio-nanocomposites, the X-ray diffraction (XRD), atomic force microscope (AFM) and scanning electron microscopy (SEM) are employed. Also, the biocompatibility and biodegradability of the manufactured scaffolds are examined by placing them in a simulated body fluid (SBF) for 21 days, their weight and pH changes are measured. The rate of degradation of the PCL-HA scaffold can be controlled by varying the percentage of its constituent components. Due to an increasing growth and activity of bone cells and the apatite formation on the free surface of the fabricated bio-nanocomposite implants as well as their reasonable mechanical properties, they have the potential to be used as a bone substitute. Additionally, with the aid of the experimentally extracted mechanical properties of the scaffolds, the vibrational characteristics of a beam-type implant made of the proposed porous bio-nanocomposites are explored. The results obtained from SEM image indicate that the scaffolds produced by the employed method have high total porosity (70%–85%) and effective porosity. The pore size is obtained between 60 and 200 μm, which is desirable for the growth and propagation of bone cells. Also, it is revealed that the addition of TiO2 nanoparticles leads to reduce the rate of dissolution of the fabricated bio-nanocomposite scaffolds.  相似文献   
7.
The micro-arc oxidation (MAO) coatings were prepared in four different electrolyte systems, including mixed acid, phosphate, phosphate-aluminate and phosphate-silicate electrolytes. The friction and wear properties of MAO coatings in ambient air, seawater and four groups of saline solutions related to seawater were investigated. The results showed that the addition of silicate to phosphate could increase the density of the coating. The phosphate-aluminate ceramic layer exhibited the lowest wear rate in various environments. Additionally, the friction coefficient and wear rate of MAO coating in seawater were lower than those in ambient air, which was due to the boundary lubrication effect of seawater. Meanwhile, the presence of divalent metal salts in seawater made its lubricity better than other salt solutions.  相似文献   
8.
《Ceramics International》2022,48(4):5154-5161
An investigation was made into the electrochemical, structural and biological properties of self-organized amorphous and anatase/rutile titanium dioxide (TiO2) nanotubes deposited on Ti–35Nb–4Zr alloy through anodization-induced surface modification. The surface of as-anodized and heat-treated TiO2 nanotubes was analyzed by field emission scanning electron microscopy (FE-SEM), revealing morphological parameters such as tube diameter, wall thickness and cross-sectional length. Glancing angle X-ray diffraction (GAXRD) was employed to identify the structural phases of titanium dioxide, while atomic force microscopy (AFM) was used to measure surface roughness associated with cell interaction properties. The electrochemical stability of TiO2 was examined by electrochemical impedance spectroscopy (EIS) and the results obtained were correlated with the microstructural characterization. The in vitro bioactivity of as-anodized and crystallized TiO2 nanotubes was also analyzed as a function of the presence of different TiO2 polymorphic phases. The results indicated that anatase TiO2 showed higher surface corrosion resistance and greater cell viability than amorphous TiO2, confirming that TiO2 nanotube crystallization plays an important role in the material's electrochemical behavior and biocompatibility.  相似文献   
9.
《Ceramics International》2022,48(9):11981-11987
Previous research have reported that B4C–TiB2 composites could be prepared by the reactive sintering of TiC–B powder mixtures. However, due to spontaneous oxidation of raw powders, using TiC–B powder mixtures with a B/TiC molar ratio of 6: 1 introduced an intermediate phase of C during the sintering process, which deteriorated the hardness of the composites. In this report, the effects of B excess on the phase composition, microstructure, and mechanical properties of B4C–TiB2 composites fabricated by reactive hot pressing TiC–B powder mixtures were investigated. XRD and Raman spectra confirmed that lattice expansion occurred in B-rich boron carbide and BxC–TiB2 (x > 4) composites were obtained. The increasing B content improved the hardness and fracture toughness but decreased the flexural strength of BxC–TiB2 (x > 4) composites. When the molar ratio of B/TiC increased from 6.6:1 to 7.8:1, the Vickers hardness and the fracture toughness of the composites were enhanced from 26.7 GPa and 4.53 MPa m1/2 to 30.4 GPa and 5.78 MPa m1/2, respectively. The improved hardness was attributed to the microstructural improvement, while the toughening mechanism was crack deflection, crack bridging and crack branching.  相似文献   
10.
《Ceramics International》2022,48(14):20158-20167
Vacuum induction melting is a potential process for the preparation of TiAl alloys with good homogeneity and low cost. But the crucial problem is a selection of high stability refractory. In this study, a BaZrO3/Y2O3 dual-phase refractory was prepared and its performance for melting TiAl alloys was studied and compared with that of a Y2O3 refractory. The results showed the dual-phase refractory consisted of BaZr1-xYxO3-δ and Y2O3(ZrO2), exhibited a thinner interaction layer (30 μm) than the Y2O3 refractory (90 μm) after melting the TiAl alloy. Although the TiAl alloys melted in the dual-phase and Y2O3 refractory exhibited similar oxygen contamination (<0.1 wt%), the alloy melted in the dual-phase refractory had smaller Y2O3 inclusion content and size than that in the Y2O3 refractory, indicating that the dual-phase refractory exhibited a better melting performance than the Y2O3 refractory. This study provides insights into the process of designing highly stable refractory for melting TiAl alloys.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号